Optimal allocation of buffer times to increase train schedule robustness

Pavle Kecman

KAJT dagarna, 27 April 2016
Dala Storsund

1.0

Contents

- Introduction and motivation
- Knapsack problem approach
- Parameter computation
- Case study and results

Capacity4Rail WP3.2

- Simulation and models to evaluate enhanced capacity
- The aim of this task is to evaluate existing tools for their suitability to assess and improve capacity utilization
- "Capacity depends on the way it is utilised" (UIC 406)
- Timetabling (and traffic control) determine the way capacity is utilised

Timetabling \& Traffic control

Timetabling - C4R Perspective

Research question

Robust timetabling enable more trains to run

LINKÖPING
UNIVERSITY

Delay propagation - microscopic

Delay propagation - macroscopic

Solution - Buffer times

LINKÖPING
UNIVERSITY

Another problem

Existing solutions

Robust optimisation:

+ Attacks general problems
- Very difficult to solve

Domain knowledge used to relax the problem:

+ Emma: Critical points
+ Fahimeh: Travel time dependent buffering

Produce a general solution using the domain knowledge

Problem definition

- Input - Timetable A
- Number of trains
- Scheduled running and dwell times
- Fixed train sequence
- Time window constraint
- Output - Timetable B
- All properties of Timeble A are kept
- Buffer times (re)distributed to increase robustness

Knapsack problem (1/2)

- Hikers wants to go on a trip

- The backpack is small, no more than 10 kg of things in the bag
- He has prepared a list of items that he would like to bring on a trip
- Water, bread, cans, maps \& compass, laptop, trousers, jacket, socks \& underwear, knife and cutlery, sweater, tent, sleeping bag

Knapsack problem (2/2)

Item	Weight [kg]	Utility: 1 (not useful) to 10 (very useful)
Cans	2.2	7
Water	2	4
Tent	3.5	8
Food	3	8
Jacket	0.5	7
Maps \& compass	0.1	10
Sleeping bag	0.8	9
Laptop	1.5	3
Trousers	0.3	6
Socks \& underwear	0.2	9
Knife \& cutlery	0.5	9
Sweater	0.5	5

LINKÖPING
UNIVERSITY

Knapsack problem (2/2)

Item	Weight [kg]	Utility: 1 (not useful) to 10 (very useful)
Cans	2.2	7
Water	2	4
Tent	3.5	8
Food	3	8
Jacket	0.5	7
Maps \& compass	0.1	10
Sleeping bag	0.8	9
Laptop	1.5	3
Trousers	0.3	6
Socks \& underwear	0.2	9
Knife \& cutlery	0.5	9
Sweater	0.5	5

Knapsack problem for buffer times (1/2)

Timetable compression UIC 406 -ish

Knapsack problem for buffer times (1/2)

Knapsack problem for buffer times (2/2)

- How to coordinate multiple sections?
- How to prioritize items (candidates)?
- Marginal profit: is the second minute (time unit) of buffer as valuable as the first? How about the third?

Multidimensional Knapsack Problem

Figure 3: Illustrative example for the knapsack capacity

Figure 4: Illustrative example for the knapsack capacity

Prioritisation

- Efficient graph algorithms can be used to compute for each candidate:
- 1. Delay impact (I): if the candidate is delayed for D, how many events will have secondary delay?
- 2. Delay sensitivity (S): how many other events can be delayed for D so that it propagates to the candidate?
- The bigger I and S, the bigger the profit for including the candidate!

) second train without scheduled stop

e) overtaking

d) first train without scheduled stop

Marginal profit

- Marginal profit from including an additional minute depends on the number of already included minutes of the same buffer

Case study

Case study

LINKÖPING
UNIVERSITY

Case study

Experimental setup

- 3 schedules generated by using different parameter setup
- 500 hundred primary delay scenarios generated
- All departured events are delayed with a uniform distribution upto 10 minutes
- On average 28 events have primary delay
- Total primary delay 150.14 min on average
- Deterministic delay propagation algorithm computed secondary delays in each scenario for each timetable (500×4 experiments in total)
- Upto 11% decrease in seconary delay

Results

	Total delay $[\mathrm{min}]$	Average delay per event [min]	Delay per 1 min prim. $[\mathrm{min}]$	Delay per init. delayed event [min]
Original	1146.70	8.49	8.87	40.95
TB 0-1	1034.20	7.66	7.99	36.94
TB Bounded	1033.80	7.65	7.98	36.92
TTB	1017.20	$\mathbf{7 . 5 3}$	$\mathbf{7 . 8 4}$	$\mathbf{3 6 . 3 2}$

- In upto 87% cases, original timetable performes worse

Next steps

- Prioritisation of buffering base don historical data
- Compuational experinements on networks
- More details about the approach available soon:
- Jovanovic P., Kecman P., Bojovic N., Mandic D. Optimal allocation of buffer times to increase schedule robustness. European Journal of Oprerations Research (to appear soon)

Thank you for your attention

www.liu.se

